圆柱体积教学反思
身为一名刚到岗的教师,教学是重要的工作之一,借助教学反思可以快速提升我们的教学能力,那要怎么写好教学反思呢?以下是小编收集整理的圆柱体积教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
圆柱体积教学反思1《圆柱的体积》不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。课上,出示课件:等底等高的长方体、正方体、圆柱,学生通过观察,作出猜测:
(1)圆柱的体积等于长方体和正方体的体积。
(2)圆柱的体积也等于底面积乘高。
猜测是否准确呢?点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用教具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。有一种推导过程是我没有预设到的:一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的一半×底面半径×高。我没有否定她的回答,接着又让学生动手实践操作,让学生发现长方体与圆柱之间的联系,利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的学习方法,转化。
在本节课的教学过程中还存在诸多的问题。
1、演示圆柱的体积的时候,因为学生手中没有学具,教师教具的局限性,演示时后面的学生看不清楚。
2、在圆柱体经过切割、拼接之后转化为近似长方体的时候,应多给后进生留有观察、讨论的时间,他们的思维反应能力比其他学生较慢,应给于他们一定的空间和时间,让后进生也积极参与到课堂的学习中,使全班同学共同进步。
3、在解决实际问题的时候,不仅要注重公式的应用,还要注意计算能力的培养。
圆柱体积教学反思2这节课我采用新课程的教学理念,合理安排教学环节,激发学生的思维,组织学生参与操作,通过观察、交流,感悟知识间的联系,从而获取新知。我深知教学无止境,没有最好只有更好,我要从成功中找不足。
首先,复习内容简单明了,以旧引新。复习的知识点是对旧知的回顾,要求学生写出长方体和正方体的体积计算公式,在对预习作业交流时我发现学生能比较顺利和准确的回答,这为新课的教学活动不仅起了良好的开端,更重要的是为学生在课堂上再进一步地、更深入地探索新知削弱了阻力,减轻了负担。
其次,引导学生大胆交流猜想和探索验证。我利用课件把等底等高的长方体、正方体和圆柱体图形和问题呈现出来,让学生观察图形思考问题并组织讨论。在对如何验证让学生作为重点交流。意图是先让学生明确两点。第一点圆可以转化成长方形,圆柱可以转化长方体;第二点把圆柱的底面经过圆心16等份,切开后可以拼成一个近似的长方体。由于学生课前做了充分的预习和课堂开始阶段预习作业的交流,学生对如何验证的思维已经初步形成。让学生再次交流和汇报,我发现学生都了解和掌握。此时我指名学生到讲台前利用教具说出操作方法,并进行操作,让全班同学观察操作过程。通过学生的操作、观察,学生得到体验和感悟,发现圆柱可以转化成一个近似的长方体。
再次,课件展示、构建新知。让学生观看课件:是把圆柱的底面平均分成32份切开后拼成的长方体。我抓住时机问学生:如果把圆柱的底面平均分的份数越多,切开后拼成的物体的形状就有什么变化?学生明确回答拼成的物体越来越接近长方体。接着我把圆柱体和转化后的长方体图象同时显示出来,要求学生说出长方体的底面积和高与圆柱的底面积和高有什么关系,学生能清楚地表达出来。推导圆柱的体积计算公式的过程分为猜想、操作、发现、结论四个阶段,学生经历这些教学活动,体验和感悟了转化的作用和价值,弄懂得了圆柱的体积计算公式的来龙去脉。
最后,分层练习,发散思维。在获得圆柱的体积计算公式的成果之后,为了培养学生解题的灵活性,拓展知识,培养学生发散思维的能力,注意分层练习,我安排了练习题是有层次和梯度的。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积。解决生活中的问题中,我设计的习题激发学生思考的欲望,压路机、铅笔、柱子这些圆柱体,需要实际测量什么,才能进一步求得圆柱的体积,孩子们大胆思考,结合生活实际找到了答案,体会到“生活中的数学”。在练习时我不断巡视关注学生练习情况,鼓励学生大胆展示,交流各自的想法和做法。对出现的错误作为教师指导的课程资源,强化孩子对圆柱体积知识点的深化和理解。
圆柱体积教学反思3今天教学“圆柱体的体积”。接受昨天学生提出的“只学不会的”学习方式,在黑板上分了两个区域,一个复习区域:长方体的体积怎样计算?圆的面积计算公式是怎样推导出来的呢?重点研究区域:圆柱体的体积怎样计算?
面对复习的问题,学生回答的很好,长方体的体积=长×宽×高,当我指着长方体的底面时,学生就说,长方体的体积=底面积×高。学生对于圆的面积计算公式的的推导记忆犹新,这是很值得我高兴的。面对本课的重点解决问题,我满怀信心(两个复习问题的铺垫,学生会首先想起来把圆柱体按照圆的面积推导过程一样,来等分圆柱体),开始引导学生独立思考,怎样计算圆柱体的体积?正当大家苦思冥想的时候,高迈把手举得高高的:老师,我想出来一种。又是他,每次回答问题总是第一个举手,把别人的“风头”都给抢去了,他是一个爱表现的学生,为了不影响其他学生思考,每次我总是“压一压”他的积极性。“给大家留一点思考的时间,等一会再说你的方法”,谁知道这个“积极分子”不容我把话说完,已经拿着自己的圆柱体跑到讲台上了,(哎,让我怎么评价他呢,耐不住性子啊,再稳重一些多好啊?),:我是这样想的,这是一个圆柱体的生日蛋糕,我想把它横着切成一个个圆片( ),分给你们吃。霎时间,下面的同学都笑了,过了一会,一个学生提问:切蛋糕,和圆柱体的体积有什么关系啊?“有啊,这个圆柱体蛋糕的体积就是每一个圆片的面积乘上圆片的个数。”这样解释完,下面的学生有的在笑,有的在议论,还有的再思考。我想想了,这是我该出手的时候了:“高迈, 给大家解释一下,圆片是什么?圆片的个数又是什么?”“圆片就是圆柱的底面积,圆片的个数就是圆柱的高”。话音刚落,掌声响了起来……。
这种推导圆柱体体积的计算方法,是出乎我意料之外的,因为,解决问题前,已经复习了长方体体积计算方法与圆的面积的推导方法,都是为“把圆柱体进行等分转化成长方体体积来推导”做铺垫的。谁曾向,这种用“堆”的过程来说明“底面积×高”计算圆柱体体积的道理,实际是“积分”思想,这是要到中学才学习的,学生不好理 ……此处隐藏6967个字……于学生足够的思考讨论时间,尽量让学生自己分析出思路,享受到成功的快乐,从而增强学生的自信心,提高学习兴趣。
圆柱体积教学反思14圆柱的体积这局部知识是同学在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中考虑,培养同学科学的思维方法;贴近同学生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发同学的学习兴趣和对科学知识的求知欲,使同学乐于探索,善于探究。
在圆的体积公式推导过程中,给予同学足够的时间和空间,激发同学的探究的欲望,培养同学的空间想象力。我把圆柱体拼成一个长方体,就是把一个新图形转换成一个我们学习过的图形,通过讨论,争鸣从而得出比较深层的数学知识,这种思维的火花,我们老师应和时捕获,让它开得绚丽多彩,从而让同学的个性能得到充沛的培养。让同学在学习的过程中体会到数学给自身带来了巨大的胜利感和喜悦感,我们老师这样才干寓教于乐,从而达到了事半功倍了。
《圆柱的体积》课后反思
本节可的教学内容是九年义务教育六年制小学教学第十二册﹙人教版﹚《圆柱的体积》,以前教学此内容时,直接告诉同学:圆柱的体积=底面积×高,用字母表示公式:V=S和,让同学套公式练习;我教此内容时,不按保守的教学方法,而是采用新的教学理念,让同学自身动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、同学学到了有价值的知识。
同学通过实践、探索、发现,得到的知识是“活”的,这样的知识对同学自身智力和发明力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、同学在自身艰苦的学习中发现并从同学的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了同学的科学精神和方法。
新课程改革明确提出要“强调让同学通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。同学动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了同学的思维发展。
保守的教学只关注教给同学多少知识,把同学当成知识的“容器”。同学的学习只是被动地接受、记忆、模仿,往往同学只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,同学在兴趣盎然中经历了自主探究、独立考虑、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识发生的过程,理解和掌握了数学基本知识,从而促进了同学的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,缺乏之处是:由于同学自由讨论、实践和考虑的时间较多,练习的时间较少。
新课程观强调:教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。在实际教学中,如何落实这一理念?自己结合“圆柱的体积”一课谈谈自身的实践与考虑。
[片段一]
师生一起探究出圆柱的体积计算公式后对公式加以应用。师出示教材例4(12册P8):一根圆柱形钢材,底面积是20平方厘米,高是1.5米,它的体积是多少?
由于课前同学已进行了预习,多数同学是依照教材介绍的解法来解答:
1.5米=150厘米 20×1150=3000(立方厘米)
师:这道题还有其他结果吗?(同学又沉入了深思)不一会儿,另外两种结果纷纷展现:
①20平方厘米=0.002平方米 0.002×11.5=0.003(立方米)
②20平方厘米=0.2平方分米 1.5米=15分米 0.2×115=3(立方分米)
师:为什么会出现三种结果?
经讨论,同学才明白:从不同的角度去考虑问题,将得到不同的结果。
[片断二]
巩固与应用阶段,我将教材练习二中的一个填表题(表1)进行了加工组合出现给同学这样一个表格(表2)。
同学填表后,师:观察前两组数据,你想说什么?
同学独立考虑后再小组交流,最后汇报。
生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。
生2:两个圆柱的高相等,底面积越大,体积就越大。
师:观察后两组数据,你想说什么?
有了前面的基础,同学很容易说出了后两组的关系。
同学的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元的教学作了提前孕伏。
[片段三]
教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?
同学动手丈量自备的圆柱形茶杯的有关数据并计算它的体积。
师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自身每天需要饮用几杯水(自身的杯子)才干保证健康,并把自身对水的想法写下来,下节课我们再交流。
圆柱体积教学反思15一、我在导入时,突破教材,有所创新
圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。
二、我教学新课时,实现人人参与,主动学习
学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,由于学校教学条件差,没有更多的学具提供给学生,只是由教师示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。
三、我在练习时,形式多样,层层递进
例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思。